Differential connexin expression, gap junction intercellular coupling, and hemichannel formation in NT2/D1 human neural progenitors and terminally differentiated hNT neurons.
نویسندگان
چکیده
Connexin-mediated gap junctions and open hemichannels in nonjunctional membranes represent two biologically relevant mechanisms by which neural progenitors can coordinate their response to changes in the extracellular environment. NT2/D1 cells are a teratocarcinoma progenitor line that can be induced to differentiate terminally into functional hNT neurons and NT-G nonneuronal cells. Clinical transplants of hNT neurons and experimental grafts of NT2/D1 progenitors or hNT neurons have been used in cell-replacement therapy in vivo. Previous studies have shown that NT2/D1 cells express connexin 43 (Cx43) and that NT2/D1 progenitors are capable of dye transfer. To determine whether NT2/D1 progenitors and differentiated hNT cultures express other connexins, Cx26, Cx30, Cx32, Cx36, Cx37, Cx43, and Cx46.6 mRNA and protein were analyzed. NT2/D1 progenitors express Cx30, Cx36, Cx37, and Cx43. hNT/NT-G cultures express Cx36, Cx37, and de novo Cx46.6. Cx26 and Cx32 were not expressed in NT2/D1 or hNT/NT-G cells. NT2/D1 progenitors formed functional gap junctions as assessed by dye coupling as well as open hemichannels in nonjunctional membranes as assessed by dye-uptake studies. Dye coupling was inhibited by the gap junction blocker 18alpha-glycyrrhetinic acid. Hemichannel activity was inhibited by the dual-specificity chloride channel/connexin hemichannel inhibitor flufenamic acid but not by the chloride channel inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Both dye coupling and dye uptake were substantially reduced following differentiation of NT2/D1 progenitors. We conclude that the pattern of connexin expression in NT2/D1 cells changes over the course of differentiation corresponding with a reduction in biochemical coupling and hemichannel activity in differentiated cells.
منابع مشابه
Synthesis and regulation of apolipoprotein E during the differentiation of human neuronal precursor NT2/D1 cells into postmitotic neurons.
Recently, we showed expression of apolipoprotein E (apoE) in human neuronal-type cells such as neuroblastoma SK N SH-SY 5Y cells. In this model, a negative effect of neuronal differentiation on apoE synthesis was suspected. To check this hypothesis, we studied the regulation of apoE in human postmitotic neurons. The presence of apoE was investigated in undifferentiated human teratocarcinoma NT2...
متن کاملThyroid hormone responsiveness in N-Tera-2 cells.
N-TERA-2 cl/D1 (NT2) cells, a human embryonal cell line with characteristics of central nervous system precursor cells, were utilised to study thyroid hormone action during early neuronal growth and differentiation. Undifferentiated NT2 cells expressed mRNAs encoding thyroid hormone receptors (TRs) alpha1, alpha2 and beta1, iodothyronine deiodinases types 2 (D2) and 3 (D3) (which act as the pre...
متن کاملMolecular cloning and functional expression of zfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina.
Gap junction-mediated electrical coupling contributes to synchronous oscillatory activities of neurons, and considerable progress has been made in defining the molecular composition of gap junction channels. In particular, cloning and functional expression of gap junction proteins (connexins (Cx)) from zebrafish retina have shown that this part of the brain possesses a high degree of connexin d...
متن کاملThree-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule.
Connexin molecules form intercellular membrane channels facilitating electronic coupling and the passage of small molecules between adjoining cells. Connexin26 (Cx26) is the second smallest member of the gap junction protein family, and mutations in Cx26 cause certain hereditary human diseases such as skin disorders and hearing loss. Here, we report the electron crystallographic structure of a ...
متن کاملAn intact connexin N-terminus is required for function but not gap junction formation.
The cytoplasmic N-termini of connexins have been implicated in protein trafficking, oligomerization and channel gating. To elucidate the role of the N-terminus in connexin37 (CX37), we studied mutant constructs containing partial deletions of its 23 N-terminal amino acids and a construct with a complete N-terminus in which residues 2-8 were replaced with alanines. All mutants containing nine or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience research
دوره 72 3 شماره
صفحات -
تاریخ انتشار 2003